您好,欢迎访问北京理工大学机构知识库!
所在位置: 首页 - 院系导航 - 信息与电子学院
相关导航
按重要数据库分组
  • 任何
  • 1032 SCIE
  • 5 SSCI
  • 3967 EI工程索引(美)
  • 814 CA化学文摘(美)
  • 988 美国剑桥科学文摘
  • 更多
按语种分组
  • 任何
  • 4660 中文
  • 5180 外文
按类型分组
  • 任何
  • 5534 期刊
  • 1581 学位论文
  • 2642 会议论文
  • 更多
年代
  • 任何
  • 196 2024
  • 909 2023
  • 960 2022
  • 764 2021
  • 492 2020
  • 620 2019
  • 523 2018
  • 459 2017
  • 896 2016
  • 877 2015
  • 765 2014
  • 559 2013
  • 430 2012
  • 465 2011
  • 467 2010
  • 387 2000-2009
  • 11 1990-1999
  • 3 1989以前
优秀人才
  • 任何
  • 449 学术称号
    • 178 973首席科学家
    • 446 长江学者
    • 449 杰出青年基金学者
  • 178 学术职务
    • 178 理事长
  • 179 行政职务
    • 179 其他
    • 1 副院长
按来源刊物分组
  • 任何
  • 388 北京理工大学学报
  • 388 Beijing Lig…
  • 357 arXiv
  • 246 博士
  • 更多
基金
  • 任何
    • 867 国家自然科学基金项目
      • 5 国家自然科学基金重…
      • 14 国家杰出青年科学基金
      • 3 国家自然科学基金青…
      • 2 国家自然科学基金重…
      • 843 国家自然科学基金
    • 121 省市基金项目
      • 4 安徽省优秀青年基金
      • 3 山东省自然科学基金
      • 2 黑龙江省自然科学基金
      • 1 上海市自然科学基金
      • 2 湖北省高等学校优秀…
      • 3 河北省自然科学基金
      • 1 浙江省科技计划基金
      • 32 重庆市自然科学基金
      • 1 重庆市杰出青年科学…
      • 1 云南省科技计划项目
      • 1 宁夏回族自治区自然…
      • 1 安徽省教育厅自然科…
      • 3 山西省自然科学基金
      • 4 内蒙古自然科学基金
      • 6 江苏省自然科学基金
      • 1 四川省教育厅自然科…
      • 1 河南省重大科技专项
      • 1 河南省重点攻关项目
      • 2 湖南省自然科学基金
      • 1 云南省应用基础研究…
      • 1 广东省科技计划基金
      • 2 河南省科技攻关基金
      • 1 广西自然科学基金
      • 1 北京市属市管高等学…
      • 28 北京市自然科学基金
      • 1 湖北省自然科学基金
      • 1 湖南省教育厅科学研…
      • 1 陕西省自然科学基金
      • 1 北京市教委科技发展…
      • 1 吉林省科技发展基金
      • 1 福建省自然科学基金
      • 1 贵州省科学技术基金
      • 3 辽宁省自然科学基金
      • 6 北京市科技新星项目
      • 1 四川省科技支撑计划…
      ... 隐藏
    • 119 科技部国家科技计划项目
      • 49 国家高技术研究发展…
      • 26 国家重点基础研究发…
      • 17 国家科技重大专项
      • 8 国家科技支撑计划
      • 19 国家科技部博士后基金
    • 50 其他基金项目
      • 44 北京理工大学基础研…
      • 5 北京理工大学优秀青…
      • 1 河北大学自然科学基金
    • 45 国家教育部基金
      • 1 教育部创新团队基金
      • 1 教育部人文社会科学…
      • 8 中央高校基本科研业…
      • 1 教育部长江学者和创…
      • 24 高等学校博士学科点…
      • 9 教育部新世纪优秀人…
      • 1 教育部科学技术研究…
      ... 隐藏
  • 更多
学院简介:成果数量:9840

[详细]

本院科研趋势: 发文数量 期刊收录
条数据
导出

作者: Pingyue Yue1;Haichuan Ding2;Shuai Wang2;Jianping An2;Yuguang Fang3; (1School of Information and Electronics, Beijing Institute of Technology, Beijing, China 2School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China 3Department of Computer Science, City University of Hong Kong, Hong Kong, China)

出处: IEEE Internet of Things Journal 2024 Vol.11 No.6 P10425-10440

关键词: Satellites;Low earth orbit satellites;Delays;Correlation;Collaboration;Spread spectrum communication;Internet of Things;Internet Of Things;Signal Acquisition;Computational Complexity;Search Space;Exhaustive Search;Earth Surface;Low Computational Complexity;Acquisition Strategies;Delay Difference;Low Earth Orbit;Doppler Frequency Shift;Satellite Coverage;False Discovery Rate;High Probability;Probability Density Function;Grid Cells;Grid Size;Detection Probability;Satellite Observations;Range Shifts;Satellite Position;Single Satellite;Terminal Position;Symbol Rate;Carrier Phase;Received Signal Power;Position Estimation;Coordinate Vector;Consecutive Acquisitions;Elimination Step

摘要: This article presents a novel noncoherent multisatellite weak signal acquisition scheme by aggregating the observations at multiple low-Earth orbit (L ...

作者: Xiao Chen1;Chao Zhu1;Jie Ma2;Guanju Shi2;Zhenjie Yang3;Xiang Gao1;Yong Cui3; (1School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China 2School of Information and Electronics, Beijing Institute of Technology, Beijing, China 3Department of Computer Science and Technology, Tsinghua University, Beijing, China)

出处: IEEE Internet of Things Journal 2024 Vol.11 No.3 P3733-3748

关键词: Sensors;Task analysis;Satellite broadcasting;Marine vehicles;Unicast;Data communication;Wireless sensor networks;Extreme Conditions;Data Transmission;Completion Time;Extreme Environments;Convex Hull;Real-world Experiments;Communication Resources;Extreme Environmental Conditions;Influential Nodes;Dense Environments;Data Delivery;Transmission Latency;Distribution Of Sensors;Satellite Links;Maritime Environment;Throughput;Diffusion Rate;Time Task;Unmanned Aerial Vehicles;Path Loss;Rate Of Nodes;Source Node;Task Completion Time;Target Node;Time Nodes;Betweenness Centrality;Data Block;Automatic Identification System;Degree Of Saturation;High Betweenness Centrality

摘要: With the advancements in sensing technologies, maritime sensing has become indispensable in various domains, including logistics, weather forecasting, ...

作者: Jiacheng Bao1;Da Li1;Shiyong Li1;Guoqiang Zhao1;Houjun Sun1;Yi Zhang1; (1Beijing Key Laboratory of Millimeter Wave and Terahertz Techniques, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China)

出处: IEEE Transactions on Microwave Theory and Techniques 2024 Vol.72 No.2 P1339-1352

关键词: Imaging;Electromagnetics;Radar imaging;Visualization;Radar;Aircraft;Computational efficiency;Range Profile;Image Generation Network;Neural Network;Structural Similarity;Deep Learning;Computational Cost;Deep Network;High-resolution Images;Deep Neural Network;Imaging Methods;Visual Images;Target Image;Peak Signal-to-noise Ratio;Anechoic Chamber;Coherent Processing;Back-projection Algorithm;Electromagnetic Data;Image Resolution;Convolutional Layers;Latent Representation;Synthetic Aperture Radar;Ground Penetrating Radar;Number Of Network Parameters;Radar Images;Generative Adversarial Networks;Contrastive Loss;Angle Interval;Augmentation Strategy;Network Generalization

摘要: Electromagnetic imaging methods mainly utilize converted sampling, dimensional transformation, and coherent processing to obtain spatial images of tar ...

作者: Qiang Zhou1;Yanhua Wang1,2,3,4,5;Xin Zhang1;Liang Zhang1;Teng Long1; (1School of Information and Electronics, Beijing Institute of Technology, Beijing, China 2Electromagnetic Sensing Research Center of CEMEE State Key Laboratory, Beijing Institute of Technology, Beijing, China 3Beijing Key Laboratory of Embedded Real-time Information Processing Technology, Beijing, China 4Chongqing Innovation Center, Beijing Institute of Technology, Chongqing, China 5Advanced Technology Research Institute, Beijing Institute of Technology, Shandong, China)

出处: IEEE Geoscience and Remote Sensing Letters 2024 P1

关键词: Testing;Scattering;Diffusion processes;Target recognition;Noise reduction;Depression;Training data

摘要: High resolution range profile (HRRP) plays a crucial role in radar target recognition. In real-world applications, variations in operational condition ...

作者: Xuhui Ding1;Kexin Zhou1;Gaoyang Li2;Kai Yang3;Xiaozheng Gao3;Jinhong Yuan4;Jianping An1; (1School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China 2Institute of Fluid Science, Tohoku University, Aoba-ku, Sendai, Japan 3School of Information and Electronics, Beijing Institute of Technology, Beijing, China 4School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia)

出处: IEEE Transactions on Communications 2024 Vol.72 No.2 P756-770

关键词: Synchronization;Iterative decoding;Complexity theory;Channel coding;Codes;Symbols;Iterative algorithms;Synchronous Frame;Decoding Method;Low-density Parity-check;Low-density Parity-check Decoder;Iterative Process;Energy Efficiency;Theoretical Results;Iterative Algorithm;Stopping Criterion;Hardware Implementation;High Energy Efficiency;Pilot Sequences;Complementary Metal Oxide Semiconductor Technology;Synchronization Performance;Detection Process;Bit Error Rate;High Signal-to-noise Ratio;Position Estimation;Optimal Estimation;Low Signal-to-noise Ratio;Low-density Parity-check Codes;Synchronization Process;Factor Graph;Signal-to-noise Ratio Region;Threshold-based Method;Decoding Process;Variable Nodes;Observation Window;Cumulative Distribution Function Curve;Forward Error Correction

摘要: In this study, a joint blind frame synchronization and decoding method is proposed based on the normalized syndrome satisfaction probability (NSSP) pr ...

作者: Xiaqing Miao1;Yunkang Liu2,3;Haoxing Zhang1;Hui Zhao4;Shuai Wang1;Gaofeng Pan1;Jianping An1; (1School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China 2School of Information and Electronics, Beijing Institute of Technology, Beijing, China 327th Research Institute of China Electronics Technology Group Corporation, Zhengzhou, China 4Communication Systems Department, EURECOM, Sophia Antipolis, France)

出处: IEEE Transactions on Aerospace and Electronic Systems 2024 Vol.60 No.1 P291-303

关键词: Satellites;Satellite communication;Security;Analytical models;Satellite broadcasting;Roads;Relays;Random Distribution;Communication Systems;Satellite Communication;Multiple Antennas;Internet Of Vehicles;Performance Of Communication Systems;Outage Performance;Monte Carlo Simulation;Theoretical Analysis;Probability Density Function;Cybersecurity;Line-of-sight;Unmanned Aerial Vehicles;Complex Scenarios;Average Gain;Beamforming;Bottom Of Page;Target System;Non-orthogonal Multiple Access;Hypergeometric Function;Legitimate Receiver;Line-of-sight Component;Orbital Height;Secure Transmission;Communication Scenarios;Channel Power Gain;Satellite Communication Systems

摘要: With the development of satellite communication technology, the application of satellites in the Internet of Vehicles (IoV) system can effectively sol ...

作者: Yinchuan Li1;Yuancheng Zhan2;Le Zheng3,4;Xiaodong Wang1; (1Electrical Engineering Department, Columbia University, New York, NY, USA 2School of Electrical and Electronic Engineering, Nanyang Technological University, Jurong West, Singapore 3Radar Research Laboratory, School of Information and Electronics, Beijing Institute of Technology, Beijing, China 4Chongqing Innovation Center, Beijing Institute of Technology, Chongqing, China)

出处: IEEE Transactions on Communications 2024 Vol.72 No.2 P1062-1074

关键词: Millimeter wave communication;Channel estimation;Compressed sensing;Approximation algorithms;Antennas;Massive MIMO;Monte Carlo methods;Channel Activity;Channel Estimation;Massive MIMO;Device Activity Detection;Simulation Results;Monte Carlo Simulation;Active Users;Base Station;Lipschitz Continuous;State Evolution;User Channel;mmWave Channel;5G Wireless Communication;Computational Complexity;Internet Of Things;False Alarm;Performance Loss;Noise Power;False Alarm Rate;Minimum Mean Square Error;Normalized Mean Square Error;Semidefinite Programming;Channel Sparsity;Pilot Sequences;Orthogonal Frequency Division Multiplexing;mmWave Communication;Discrete Grid;Rayleigh Fading;Direct Solver;Asymptotic Regime

摘要: Millimeter-Wave Massive MIMO is important for beyond 5G or 6G wireless communication networks. The goal of this paper is to establish successful commu ...

作者: Zhen Gao1,2,3;Malong Ke4;Yikun Mei5;Li Qiao5,6;Sheng Chen7;Derrick Wing Kwan Ng8;H. Vincent Poor9; (1MIIT Key Laboratory of Complex-Field Intelligent Sensing, Beijing Institute of Technology, Beijing, China 2Yangtze Delta Region Academy, Beijing Institute of Technology (Jiaxing), Jiaxing, China 3Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, China 4Wireless Product Division, Ruijie Network Company Ltd., Fuzhou, China 5School of Information and Electronics, Beijing Institute of Technology, Beijing, China 65GIC & 6GIC, Institute for Communication Systems, University of Surrey, Guildford, U.K. 7School of Electronics and Computer Science, University of Southampton, Southampton, U.K. 8School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, Australia 9Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA)

出处: IEEE Internet of Things Journal 2024 Vol.11 No.5 P7411-7435

关键词: Internet of Things;6G mobile communication;Uplink;Wireless communication;Low-power wide area networks;Standards;Monitoring;Massive Communication;Grant-free Massive Access;Base Station;Academic Community;Random Access;Industrial Communities;Massive Multiple-input Multiple-output;Heterogeneous Devices;Random Scenario;Ubiquitous Connectivity;Internet Of Things;Sparse Matrix;Active Devices;Spectral Efficiency;Channel Estimation;Internet Of Things Applications;Channel Matrix;Sparse Structure;Non-orthogonal Multiple Access;Base Station Antennas;Non-orthogonal Multiple Access Scheme;Orthogonal Multiple Access;Low Power Wide Area Networks;Channel Impulse Response;Channel Sparsity;Power-domain Non-orthogonal Multiple Access;Access Latency;Time-frequency Resource;Signals Of Devices;Signaling Overhead

摘要: The envisioned sixth-generation (6G) of wireless communications is expected to give rise to the necessity of connecting very large quantities of heter ...

作者: Zhengyan Zhang1,2;Xiaodong Qu1,2;Wolin Li1,2;Hongzhe Miao1,2;Fengrui Liu1,2; (1School of Information and Electronics, Beijing Institute of Technology, Beijing, China 2Key Laboratory of Electronic and Information Technology in Satellite Navigation, Ministry of Education, Beijing, China)

出处: IEEE Signal Processing Letters 2024 Vol.31 P701-705

关键词: Estimation;Direction-of-arrival estimation;Training;Interference;Signal to noise ratio;Covariance matrices;Unsupervised learning;Unsupervised Learning;Direction Of Arrival Estimation;Direction Of Arrival Estimation Method;Unsupervised Learning Network;Loss Function;Numerical Simulations;Estimation Performance;Penalty Term;Direct Signal;Strong Interference;Interference Power;Influence Of Interference;Root Mean Square Error;Training Set;Monte Carlo Simulation;Convolutional Neural Network;Covariance Matrix;Weak Signal;Radiation Source;Spatial Domain;Uniform Linear Array;Sparse Bayesian Learning;ResNet Block;Unsupervised Strategy;Uniform Grid;Sparse Method

摘要: In complex electronic countermeasure environment, direction-of-arrival (DOA) is very important for targets detection, localization and tracking. Howev ...

作者: Zhimin Chen1,2,3;Peng Chen4,2;Le Zheng5,6;Yudong Zhang7; (1School of Electronic and Information, Shanghai Dianji University, Shanghai, China 2State Key Laboratory of Integrated Services Networks, Xidian University, Xi\'an, China 3Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong 4State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China 5Radar Research Laboratory, School of Information and Electronics, Beijing Institute of Technology, Beijing, China 6Chongqing Innovation Center, Beijing Institute of Technology, Chongqing, China 7School of Computing and Mathematical Sciences, University of Leicester, Leicester, U.K.)

出处: IEEE Transactions on Vehicular Technology 2024 Vol.73 No.2 P1792-1802

关键词: Estimation;Direction-of-arrival estimation;Sensors;Reflection;Mutual coupling;Channel estimation;Wireless communication;Reconfigurable Intelligent Surface;Direction Of Arrival Estimation;Direction Of Arrival Estimation Method;Practical Reconfigurable Intelligent Surface;Model System;Wireless;Computational Complexity;Deep Neural Network;Low Complexity;Phase Shift;Estimation Performance;Spatial Domain;Low Computational Complexity;Mutual Effect;Mutual Coupling;Semidefinite Programming;Problem Scenario;Intelligent Reflecting Surface;Mutual Coupling Effect;Reconfigurable Intelligent Surface Elements;Adjacent Elements;Performance In Scenarios;Semidefinite Programming Problem;Unmanned Aerial Vehicles;Reflection Signal;Reflection Coefficient;Fast Fourier Transform Method;Orthogonal Matching Pursuit;Low Earth Orbit;Root Mean Square Error

摘要: Reconfigurable intelligent surface (RIS) or intelligent reflecting surface (IRS) has been an attractive technology for future wireless communication a ...

信息与电子学院简介