您好,欢迎访问北京理工大学机构知识库!
所在位置: 首页 - 学者导航
相关导航
按重要数据库分组
  • 任何
  • 66 SCIE
  • 118 EI工程索引(美)
  • 2 美国剑桥科学文摘
  • 1 CSCD中国科学引文库
  • 4 国内核心期刊
  • 更多
按类型分组
  • 任何
  • 16 专利
  • 10 学位论文
  • 152 期刊
  • 1 会议论文
  • 更多
按语种分组
  • 任何
  • 31 中文
  • 148 外文
优秀人才
  • 任何
    • 179 学术称号
      • 179 长江学者
      • 179 杰出青年基金学者
    • 179 行政职务
      • 179 其他
      • 179 副院长
年代
  • 任何
  • 12 2024
  • 90 2023
  • 56 2022
  • 6 2021
  • 1 2020
  • 1 2019
  • 1 2017
  • 3 2016
  • 1 2015
  • 3 2014
按来源期刊分组
  • 任何
  • 66 arXiv
  • 15 Physical Re..
  • 11 PHYSICAL RE..
  • 7 博士
  • 6 Physical Re..
  • 更多
基金
  • 任何
    • 2 国家自然科学基金项目
      • 2 国家自然科学基金
  • 更多

姚裕贵

  • 职称:教授
  • 研究方向:计算物理和量子功能材料设计与应用
  • 所属院系:物理学院   副院长
  • 成果数量:179条,属于本单位的个人成果179条

条数据
导出

作者: Rajan, Adithya1; Saunderson, Tom G.1, 2; Lux, Fabian R.1, 2, 3; Díaz, Rocío Yanes4; Abdullah, Hasan M.5; Bose, Arnab1; Bednarz, Beatrice1; Kim, Jun-Young1, 6; Go, Dongwook1, 2; Hajiri, Tetsuya7; Shukla, Gokaran5; Gomonay, Olena1; Yao, Yugui8; Feng, Wanxiang8; Asano, Hidefumi7; Schwingenschlögl, Udo5; López-Díaz, Luis4; Sinova, Jairo1; Mokrousov, Yuriy1, 2; Manchon, Aurélien9; Kláui, Mathias1, 101Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 7, Mainz; 55128, Germany;2Peter Grünberg Institut, Institute for Advanced Simulation, Forschungszentrum Jülich, Jara, Jülich; 52425, Germany;3Department of Physics, Yeshiva University, New York; NY, United States;4Department of Applied Physics, Universidad de Salamanca, Plaza de la Merced, Salamanca; 37008, Spain;5Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal; 23955-6900, Saudi Arabia;6Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A STAR), Singapore; 138634, Singapore;7Department of Materials Physics, Nagoya University, Nagoya; 464-8603, Japan;8Beijing Institute of Technology, Beijing; 100081, China;9Aix-Marseille Université, Cnrs, CINaM, Marseille, France;10Centre for Quantum Spintronics, Norwegian University of Science and Technology, Trondheim; 7491, Norway)

出处: arXiv 2023

作者: Li, Lei1, 2; Cao, Jin1, 2; Cui, Chaoxi1, 2; Yu, Zhi-Ming1, 2; Yao, Yugui1, 21Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing; 100081, China;2Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing; 100081, China)

出处: arXiv 2023

作者: Zhou, Xiaodong1, 2, 3; Feng, Wanxiang1, 2; Zhang, Run-Wu1, 2; Šmejkal, Libor4, 5; Sinova, Jairo4, 5; Mokrousov, Yuriy4, 6; Yao, Yugui1, 21Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing; 100081, China;2Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing; 100081, China;3Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou; 221116, China;4Institute of Physics, Johannes Gutenberg University Mainz, Mainz; 55099, Germany;5Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Praha 6; 162 00, Czech Republic;6Peter Grünberg Institut, Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Jülich; 52425, Germany)

出处: arXiv 2023

作者: Zhang, Zeying1234;Yu, Zhiming234;Liu, Guibin23;Li, Zhenye1;Yang, Shengyuan A.4;Yao, Yugui23; (1College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China;2Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China;3Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China;4Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore, 487372, Singapore)

出处: Computer Physics Communications 2023 Vol.290

摘要: We propose an efficient algorithm for constructing k⋅p effective Hamiltonians, which is much faster than previously proposed algorithms. This algorith ...

作者: Takemi Kato1,;;Yongkai Li2,3,4,;;Min Liu2,3,5,;;Kosuke Nakayama1,6,†;Zhiwei Wang2,3,4,;Seigo Souma7,8;Miho Kitamura9;Koji Horiba9,10;Hiroshi Kumigashira11;Takashi Takahashi1;Yugui Yao2,3; and Takafumi Sato1,7,8,12,13,§; (1Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan; 2Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People\'s Republic of China; 3Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, People\'s Republic of China; 4Material Science Center, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314011, People\'s Republic of China; 5College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, People\'s Republic of China; 6Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan; 7Center for Science and Innovation in Spintronics (CSIS), Tohoku University, Sendai 980-8577, Japan; 8Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan; 9Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan; 10National Institutes for Quantum Science and Technology (QST), Sendai 980-8579, Japan; 11Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan; 12International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, Sendai 980-8577, Japan; 13Mathematical Science Center for Co-creative Society (MathCCS), Tohoku University, Sendai 980-8578, Japan;)

出处: Physical Review B 2023 Vol.107 No.24 P245143

摘要: Recently discovered kagome superconductors A V 3 Sb 5 ( A = K , Rb , Cs ) exhibit exotic bulk and surface physical properties such as charge density w ...

作者: Zhou, Xiaoxiang1,2;Li, Yongkai3,4;Fan, Xinwei1,2;Hao, Jiahao1,2;Xiang, Ying1,2;Liu, Zhe1,2;Dai, Yaomin1,2;Wang, Zhiwei3,4;Yao, Yugui3,4;Wen, Hai-Hu11Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.;2Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Dept Phys, Nanjing 210093, Peoples R China.;3Beijing Inst Technol, Sch Phys, Key Lab Adv Optoelect Quantum Architecture & Measu, Minist Educ, Beijing 100081, Peoples R China.;4Beijing Inst Technol, Beijing Key Lab Nanophoton & Ultrafine Optoelect S, Micronano Ctr, Beijing 100081, Peoples R China.)

出处: PHYSICAL REVIEW B 2023 Vol.107 No.16

关键词: SUPERCONDUCTIVITY; INSULATOR; STATE; MODEL

摘要: The kagome metals AV3Sb5 (A = K, Rb, Cs) have attracted enormous interest as they exhibit an intertwined charge density wave (CDW) and superconductivi ...

作者: Bampoulis, Pantelis1;Castenmiller, Carolien1;Klaassen, Dennis J.1;van Mil, Jelle1;Liu, Yichen2;Liu, Cheng-Cheng2;Yao, Yugui2;Ezawa, Motohiko3;Rudenko, Alexander N.4;Zandvliet, Harold J. W.11Univ Twente, MESA Inst, Phys Interfaces & Nanomat, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands.;2Beijing Inst Technol, Ctr Quantum Phys, Sch Phys, Key Lab Adv Optoelect Quantum Architecture & Measu, Beijing 100081, Peoples R China.;3Univ Tokyo, Dept Appl Phys, Hongo, Tokyo 1138656, Japan.;4Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands.)

出处: PHYSICAL REVIEW LETTERS 2023 Vol.130 No.19

摘要: We present the first experimental evidence of a topological phase transition in a monoelemental quantum spin Hall insulator. Particularly, we show tha ...

作者: Pei, Cuiying1;Zhu, Peng2,3,4;Li, Bingtan5,6,7;Zhao, Yi1;Gao, Lingling1;Li, Changhua1;Zhu, Shihao1;Zhang, Qinghua8;Ying, Tianping8;Gu, Lin8;Gao, Bo9;Gou, Huiyang9;Yao, Yansun10;Sun, Jian11,12;Liu, Hanyu5,6,7;Chen, Yulin1,13,14;Wang, Zhiwei2,3,4;Yao, Yugui2,3;Qi, Yanpeng1,13,151ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China.;2Beijing Inst Technol, Sch Phys, Ctr Quantum Phys, Key Lab Adv Optoelect Quantum Architecture & Meas, Beijing 100081, Peoples R China.;3Beijing Inst Technol, Beijing Key Lab Nanophoton & Ultrafine Optoelect, Beijing 100081, Peoples R China.;4Beijing Inst Technol, Yangtze Delta Reg Acad, Mat Sci Ctr, Jiaxing 314011, Peoples R China.;5Jilin Univ, Coll Phys, State Key Lab Superhard Mat, Changchun 130012, Peoples R China.;6Jilin Univ, Coll Phys, Int Ctr Computat Method & Software, Changchun 130012, Peoples R China.;7Jilin Univ, Int Ctr Future Sci, Changchun 130012, Peoples R China.;8Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.;9Ctr High Pressure Sci & Technol Adv Res, Beijing 100094, Peoples R China.;10Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada.;11Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.;12Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China.;13ShanghaiTech Univ, ShanghaiTech Lab Topol Phys, Shanghai 201210, Peoples R China.;14Univ Oxford, Clarendon Lab, Dept Phys, Parks Rd, Oxford OX1 3PU, England.;15ShanghaiTech Univ, Shanghai Key Lab High Resolut Elect Microscopy, Shanghai 201210, Peoples R China.)

出处: SCIENCE CHINA-MATERIALS 2023

关键词: SINGLE DIRAC CONE; LEAD CHALCOGENIDES; CRYSTAL-STRUCTURE; INSULATOR; TRANSITION; PBSE; TRANSPORT; BI2SE3

摘要: Recently, the natural heterostructure of (PbSe)(5)-(Bi2Se3)(6) has been theoretically predicted and experimentally confirmed as a topological insulato ...

作者: Rong, Hongtao1,2;Huang, Zhenqiao1,2,3;Zhang, Xin4,5;Kumar, Shiv6;Zhang, Fayuang1,2;Zhang, Chengcheng1,2;Wang, Yuan1,2;Hao, Zhanyang1,2;Cai, Yongqing1,2;Wang, Le1,2;Liu, Cai1,2;Ma, Xiaoming1,2;Guo, Shu1,2;Shen, Bing7;Liu, Yi8;Cui, Shengtao8;Shimada, Kenya6;Wu, Quansheng9,10;Lin, Junhao1;Yao, Yugui4,5;Wang, Zhiwei4,5,11;Xu, Hu1,2;Chen, Chaoyu1,21Southern Univ Sci & Technol SUSTech, Shenzhen Inst Quantum Sci & Engn SIQSE, Dept Phys, Shenzhen 518055, Peoples R China.;2Southern Univ Sci & Technol SUSTech, Dept Phys, Shenzhen 518055, Peoples R China.;3Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay, Hong Kong, Peoples R China.;4Beijing Inst Technol, Ctr Quantum Phys, Sch Phys, Key Lab Adv Optoelect Quantum Architecture & Measu, Beijing 100081, Peoples R China.;5Beijing Inst Technol, Beijing Key Lab Nanophoton & Ultrafine Optoelect S, Beijing 10008, Peoples R China.;6Hiroshima Univ, Hiroshima Synchrotron Radiat Ctr, Higashihiroshima, Hiroshima 7390046, Japan.;7Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China.;8Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China.;9Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.;10Univ Chinese Acad Sci, Beijing 100049, Peoples R China.;11Beijing Inst Technol, Mat Sci Ctr, Yangtze Delta Reg Acad, Jiaxing 314011, Peoples R China.)

出处: NPJ QUANTUM MATERIALS 2023 Vol.8 No.1

关键词: TOPOLOGICAL DIRAC SEMIMETAL; WEYL SEMIMETAL; SURFACE-STATES; DISCOVERY; INSULATOR; PHASE; ARCS

摘要: Space groups describing the symmetry of lattice structure allow the emergence of fermionic quasiparticles with various degeneracy in the band structur ...

作者: Pei, Cuiying1; Zhu, Peng2, 3, 4; Li, Bingtan5, 6; Zhao, Yi1; Gao, Lingling1; Li, Changhua1; Zhu, Shihao1; Zhang, Qinghua7; Ying, Tianping7; Gu, Lin7; Gao, Bo8; Gou, Huiyang8; Yao, Yansun9; Sun, Jian10; Liu, Hanyu5, 6; Chen, Yulin1, 11, 12; Wang, Zhiwei2, 3, 4; Yao, Yugui2, 3; Qi, Yanpeng1, 11, 131School of Physical Science and Technology, ShanghaiTech University, Shanghai; 201210, China;2Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing; 100081, China;3Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing; 100081, China;4Material Science Center, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing; 314011, China;5State Key Laboratory of Superhard Materials, International Center for Computational Method and Software, College of Physics, Jilin University, Changchun; 130012, China;6International Center of Future Science, Jilin University, Changchun; 130012, China;7Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing; 100190, China;8Center for High Pressure Science and Technology Advanced Research, Beijing; 100094, China;9Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon; SK; S7N 5E2, Canada;10National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing; 210093, China;11ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai; 201210, China;12Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford; OX1 3PU, United Kingdom;13Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai; 201210, China)

出处: arXiv 2023

姚裕贵教授简介

Prof. Yugui Yao   姚裕贵

北京理工大学物理学院长江特聘教授、杰青、博士生导师、常务副院长

北京大学量子材料中心客座教授 (2016- )

中国科学院物理研究所研究员  (2007-2011)

通讯地址:北京海淀区中关村南大街5号 北京理工大学物理学院 邮编 100081

实验室主页:http://qfmda.com


教育经历:

1992年在南开大学物理系获得物理学学士学位,其后分别获得中科院上海光学精密机械研究所的光学硕士学位(1995)和中科院力学研究所的力学博士学位(1999)。


工作经历:

1999-2001年进入中科院物理研究所博士后流动站,出站后留所工作。2001-2003年到美国Texas大学Austin分校物理系从事博士后研究。2004年任物理所副研究员,2007年破格提升为研究员,2008年物理所博士生导师。2011年10月调到北京理工大学物理学院工作,现任教授、博士生导师、理论和计算物理中心主任、常务副院长。


教学经历:

主讲本科生课程《物理学专业导论》、《计算科学》和研究生课程《计算物理》。


科研方向:

研究方向为计算物理和量子功能材料设计与应用,具体有: 

(1)发展基于量子力学的计算方法,研究材料中拓扑物性、反常霍尔效应、自旋霍尔效应、轨道霍尔效应、平面霍尔效应、热电效应、磁光效应、磁阻、磁矩等量子物性,特别关注自旋-轨道耦合体系的电子结构、BERRY相与量子物性之间的关系;在此基础上将开发和设计出相应的高性能并行计算软件包。 

(2)结合理论设计、计算模拟和实验方法,设计和制备各种新型量子功能材料(如拓扑绝缘体、拓扑超导体、拓扑半金属、二维层状量子材料等)并研究其相关物性;通过研究光与物质的相互作用机理,设计和生长高性能光电探测材料、光能源量子转换材料,并制备高效的光电池和光催化器件。


具体研究方向还可参考:

实验室主页:http://qfmda.com

文章目录:  http://www.researcherid.com/rid/A-8411-2012


主要学术业绩:

研究领域为计算物理和凝聚态物理,至今在SCI收录的杂志上发表100余篇研究论文,其中包括19篇Phys. Rev. Lett.,1篇Nat. Mater.,2篇Nano Lett.,2篇ACS Nano,1篇Chem. Sov. Rev.,1篇Prog. Mater. Sci.。在反常霍尔效应、拓扑绝缘体、石墨烯、硅烯等领域的研究成果获得了国内外同行的广泛关注,所有文章共被引用约5300次,目前年均引用1300余次,5篇论文单篇引用过300次,12篇论文单篇引用过100次,过去十年13篇论文入选ESI(High Cited Papers)h-index=35,曾在美国APS年会等国际会议多次作邀请报告。

曾获2011年“中国科学院杰出科技成就奖”,2012年获得国家杰出青年基金资助、入选“长江学者特聘教授”计划,2014年入选“科技部中青年科技创新领军人才”计划,2016年入选国家“万人计划科技创新领军人才”计划。中国计算物理学会理事,中国物理学会凝聚态计算专业委员会委员,中国材料研究学会计算材料学分会副秘书长。Scientific Reports,International Journal of Modern Physics B,Modern Physics Letters B国际SCI期刊编委,承担国家自然科学基金面上项目、科技部973/量子调控等项目多项。


主要学术贡献:

姚裕贵教授长期从事计算物理凝聚态物理研究,重要工作大都可归结于利用第一性原理方法研究真实材料的贝里相位效应范畴,简如下:

(1) 反常输运研究:

率先发展了精确计算反常霍尔电导率的第一性原理方法,阐明了反常Hall效应的内禀物理机制,并定量指出反常Hall效应中基于Berry Phase的内禀部分重要性。该工作单篇引用达260次,并被实验所验证,如德国汉堡大学的Kötzler教授实验组和美国国家Oak Ridge国家实验室Mandrus教授实验组著名计算物理学家美国科学院院士Vanderbilt在2006年Rahman奖(APS计算物理方面最高奖)的获奖报告中曾评价此工作是贝里相应用到材料电子结构理论中的重要进展,2012年他在Rev. Mod. Phy. 综述文章中认为我们关于贝里曲率的第一性原理计算是开创性的工作。与美国田纳西大学Weitering教授实验组合作,提出反常Hall效应内禀和外在部分的分解方法,并给出反常Hall效应中内禀电导率和磁化强度成线性关系的理论解释及定量计算,该工作写进了Wiley出版社的Michael P. Marder的《Condensed Matter Physics》教科书第二版第17章504页。在此基础上,国际上我们还首先发展了计算其它反常输运物理量(如反常热电系数、自旋霍尔电导率)的第一性原理方法,能定量解释和预测相关实验。

代表性论文:Phys. Rev. Lett. 92, 037204 (2004); 96, 037204 (2006); 97, 026603 (2006); 94, 226601 (2005); 95, 156601 (2005)。


 (2)拓扑物性研究:

三维拓扑材料的研究:

率先发展了适用于任意体系的拓扑不变量Z2的第一性原理方法,并利用该方法预测了Half-Heusler和黄铜矿两个新体系中可能存在大量三维拓扑绝缘体,部分拓扑材料被美国马里兰大学、波兰科学院、中科院物理研究所等研究组实验所证实,此外美国科学院院士张首晟教授也在他的Rep. Prog. Phys. 综述文献中大篇幅引用我们的工作;预测了beta-Bi4Br4和应变的beta-Bi4I4是弱拓扑绝缘体,发现强拓扑绝缘体和弱拓扑绝缘体拓扑相变区间会形成复合Weyl半金属;预测了第二类外尔半金属的非常规磁响应。

代表性论文:Phys. Rev. Lett. 105, 096404 (2010);106, 016402 (2011);109, 266405 (2012); 116, 066801 (2016); 117, 077202 (2016);  Phys. Rev. B  82,235121;Comp. Phys. Comm. 183, 1849 (2012)。


二维拓扑绝缘体的研究:

国际上率先研究了石墨烯中的自旋轨道耦合相互作用,并指出实验条件下量子自旋霍尔效应在纯石墨烯中不可能实现该工作获得了国际上的广泛认可,单篇引用397次。其中,诺贝尔奖获得者Geim和美国科学院院士Kane量子自旋霍尔效应和拓扑绝缘体概念提出者分别在他们的Rev. Mod. Phys.综述中引用我们的工作和能隙数据,肯定我们的结论。在此基础上,预测石墨烯通过吸附铁原子或者将其放在铁磁绝缘体上,可能观测到量子反常霍尔效应,这个工作激发了很多后续工作,单篇引用193余次。

首次指出类石墨烯体系-硅烯锗烯锡烯是二维拓扑绝缘体,并预测可能实现量子自旋霍尔效应,相关文章单篇引用660次、339次,文中提出的相关理论模型也被文献中命名为“Liu-Yao-Feng-Ezawa 模型”,这个模型已被应用于很多物理问题的研究。除了量子自旋霍尔效应,还预测了硅烯中谷极化的量子反常霍尔效应和拓扑高温超导等,该系列工作引发了理论上研究和实验上合成硅烯、锗烯、锡烯的热潮,其中2012年我们和中科院物理所吴克辉实验小组合作在金属银衬底上合成了硅烯,是世界上最早合成硅烯的三个实验组之一,该实验工作相关论文单篇引用339次、410次。这些工作具有国际影响力,如2011年我们发表的Physical Review Letters理论文章,是该领域引用最高的论文之一,目前已被引用869次(from google scholar, keyword: silicene,排第二,排第一的是一篇实验工作)。

预测了两类性能优良的量子自旋霍尔绝缘体- Bi4Br4和能隙最大的铋烷体系,有待实验证实。

代表性论文:Phys. Rev. Lett. 107,076802 (2011);109, 056804 (2012);111,066804 (2013);112,106802 (2014);Phys. Rev. B 75, 041401(R) (2007);82, 161414(R) (2010);84, 195430 (2011);90,085431 (2014);Nano Lett. 14, 4767 (2014);Prog.  Mater. Sci. 83, 24 (2016).


招生信息和学生培养情况

每年拟招收多名保送或考研研究生(硕士生、硕博连读生或博士生)、博士后。对学生的要求:1. 热爱科学研究,如果不真心喜欢或仅需要文凭者请您不要报考我;2. 刻苦勤奋、工作主动;3. 鼓励学科交叉。报考前请和我联系,优秀生面试通过后可预录取,在读期间表现优异者有出国交流机会。 


联系方式:

----------------

Yugui Yao (姚裕贵)

School of Physics

Beijing Institute of Technology

Beijing 100081, China

Tel:86-10-68918672

Fax:86-10-68913163

Email: ygyao@bit.edu.cn  ;   ygyao@aphy.iphy.ac.cn  

Personal Homepage: http://physics.bit.edu.cn/szdw/zzjzg/zg/yyg/index.htm

Lab Homepage: http://qfmda.com