您好,欢迎访问北京理工大学机构知识库!
所在位置: 首页 - 作者导航 - 陈学超
- 合作者关系

陈学超

机电学院

职称:讲师

陈学超所有成果
导出

作者:周宇航

学位名称:硕士

出处:北京理工大学机电学院 2016

关键词:仿人机器人;摔倒检测;运动规划;柔顺控制

摘要:仿人机器人在行走和作业过程中往往会因自身或者环境因素摔倒,机器人摔倒可能导致其自身部件损坏,无法完成任务。目前国内外已经开展了仿人机器人摔倒保护的研究,其中大部分采用仿生手段对机器人进行摔倒运动规划。然而,对于仿人机器人摔倒利用手臂支撑减小损伤的情况鲜有研究。本文开展关于仿人机器人前摔保护的研究,利 ...

作者:Zhaoyang Cai1;Xuechao Chen1;Qingqing Li1;Huaxin Liu1;Zhangguo Yu1; (1 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.)

出处:Biomimetics (Basel, Switzerland) 2022

关键词:bionic;humanoid robot;mechanism design.

摘要:The foot is an important part of humanoid robot locomotion that can help with shock absorption while making contact with the ground. The mechanism of ...

发明人:黄强,赖俊杭,陈学超,余张国,高峻峣,李庆庆,李超

申请日期:2022.08.26

摘要:本发明公开了机器人三自由度电驱动耦合关节的运动可行范围线性界定方法,由未超限电机转角向量对应的关节角向量构成运动可行关节角向量集合,将运动可行关节角向量集合沿任意关节的关节可行运动范围分层切片,得到数据切片子集并进行边缘检测,得到边缘可行切片集合;整合所有边缘可行切片集合,按所属近似平面分类,得到待 ...

发明人:黄强,赖俊杭,陈学超,余张国,高峻峣,李庆庆

申请日期:2022.08.23

摘要:本发明公开了一种基于双层模型预测控制的双足机器人全向行走质心轨迹规划方法,上层MPC在满足ZMP稳定性约束和质心运动可行域约束的条件下,得到稀疏的质心运动轨迹和ZMP轨迹;下层MPC以跟踪上层稀疏轨迹为目标,得到密集质心位置运动轨迹;该密集轨迹经质心轨迹检测器判定无发散后,输出当前时刻的质心运动位置 ...

发明人:黄强,赖俊杭,陈学超,余张国,高峻峣,李庆庆,李超

申请日期:2022.07.29

摘要:本发明公开了基于联邦卡尔曼滤波的双足机器人行走质心状态估计方法,惯性滤波器、运动学滤波器和线性倒立摆滤波器,分别处理惯性测量单元、关节码盘和力传感器的量测信息,经卡尔曼滤波时间更新和量测更新,得到次优质心状态估计向量和对应的误差协方差矩阵;主滤波器经卡尔曼滤波时间更新,得到次优质心状态估计向量和对应 ...

作者:Zhifa Gao;Xuechao Chen;Zhangguo Yu;Lianqiang Han;Jintao Zhang;Gao Huang (1 School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China. 2 Faculty of Information Technology, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.)

出处:Biomimetics (Basel, Switzerland) 2023

关键词:angular momentum;biped robot;joint torque control.

摘要:Biped robots swing their legs alternately to achieve highly dynamic walking, which is the basic ability required for them to perform tasks. However, s ...

作者:Fei Meng;Qiang Huang;Zhangguo Yu;Xuechao Chen;Xuxiao Fan;Wu Zhang;Aiguo Ming (1School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China;2Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China;Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081, China;.;3School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China;.;4Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China;5Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan)

出处:Engineering 2022

关键词:Electric actuator;Variable transmission;Integral torque control;Legged robot

摘要:Unmanned systems such as legged robots require fast-motion responses for operation in complex environments. These systems therefore require explosive ...

作者:Huang, Qiang1;Dong, Chencheng2;Yu, Zhangguo3;Chen, Xuechao4;Li, Qingqing5;Chen, Huanzhong6;Liu, Huaxin7; (1School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081 China, with the Beijing Advanced Innovation Center for Intelligent Robotics and System, Beijing Institute of Technology, Beijing 100081 China, with the Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081 China, with the International Joint Research Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081 China, and also with the State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing 100081 China (e-mail: qhuang@bit.edu.cn).;2School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081 China, with the Beijing Advanced Innovation Center for Intelligent Robotics and System, Beijing Institute of Technology, Beijing 100081 China, and also with the Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081 China (e-mail: 3120195094@bit.edu.cn).;3School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081 China, with the Beijing Advanced Innovation Center for Intelligent Robotics and System, Beijing Institute of Technology, Beijing 100081 China, with the Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081 China, with the International Joint Research Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081 China, and also with the State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing 100081 China (e-mail: yuzg@bit.edu.cn).;4School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081 China, with the Beijing Advanced Innovation Center for Intelligent Robotics and System, Beijing Institute of Technology, Beijing 100081 China, with the Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081 China, with the International Joint Research Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081 China, and also with the State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing 100081 China (e-mail: chenxuechao@bit.edu.cn).;5School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081 China, with the Beijing Advanced Innovation Center for Intelligent Robotics and System, Beijing Institute of Technology, Beijing 100081 China, and also with the Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081 China (e-mail: hexb66@bit.edu.cn).;6School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081 China, with the Beijing Advanced Innovation Center for Intelligent Robotics and System, Beijing Institute of Technology, Beijing 100081 China, and also with the Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081 China (e-mail: 3120195092@bit.edu.cn).;7School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081 China, with the Beijing Advanced Innovation Center for Intelligent Robotics and System, Beijing Institute of Technology, Beijing 100081 China, and also with the Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081 China (e-mail: 0077@bit.edu.cn).)

出处:IEEE/ASME Transactions on Mechatronics 2022

关键词:CAPTURABILITY-BASED ANALYSIS;IMPEDANCE CONTROL;LEGGED LOCOMOTION;WALKING;UNEVEN;JOINT;MANIPULATION;MODEL

摘要:Compliance control is important for the realization of disturbance absorption in biped robots. However, under a sustained disturbance, compliance cont ...

作者:Xuejian Qiu;Zhangguo Yu;Libo Meng;Xuechao Chen;Lingxuan Zhao;Gao Huang;Fei Meng (1 School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China. 2 Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081, China. 3 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.)

出处:Micromachines 2022

关键词:mode transition;quadratic programming;two locomotion modes;wheel-legged robot.

摘要:To face the challenge of adapting to complex terrains and environments, we develop a novel wheel-legged robot that can switch motion modes to adapt to ...

作者:韩连强1;,陈学超1,2;,余张国1,2;,高志发1;,黄岩1,2;,黄强1,2; (1北京理工大学机电学院;2仿生机器人与系统教育部重点实验室)

出处:自动化学报 2022

关键词:欠驱动双足机器人;离散地形;平衡控制;虚拟约束;模型预测控制

摘要:欠驱动双足机器人在行走中为保持自身的平衡,双脚需要不间断运动.但在仅有特定立足点的离散地形上很难实现调整后的落脚点,从而导致欠驱动双足机器人在复杂环境中的适应能力下降.提出了基于虚拟约束(Virtual constraint,VC)的变步长调节与控制方法,根据欠驱动双足机器人当前状态与参考落脚点设计 ...