您好,欢迎访问北京理工大学机构知识库!
所在位置: 首页 - 院系导航 - 机电学院
相关导航
按重要数据库分组
  • 任何
  • 232 SCIE
  • 4 SSCI
  • 593 EI工程索引(美)
  • 439 CA化学文摘(美)
  • 431 美国剑桥科学文摘
  • 更多
按语种分组
  • 任何
  • 1108 中文
  • 927 外文
按类型分组
  • 任何
  • 1480 期刊
  • 531 会议论文
  • 24 专利
  • 更多
年代
  • 任何
  • 122 2019
  • 117 2018
  • 177 2017
  • 167 2016
  • 255 2015
  • 261 2014
  • 197 2013
  • 214 2012
  • 207 2011
  • 154 2010
  • 146 2000-2009
  • 4 1990-1999
  • 1 1989以前
优秀人才
  • 任何
  • 123 学术称号
    • 1 工程院院士
    • 3 973首席科学家
    • 27 千人计划学者
    • 115 长江学者
    • 117 杰出青年基金学者
  • 2 学术职务
    • 2 理事长
  • 115 行政职务
    • 112 其他
    • 1 校长
    • 2 院长
按来源刊物分组
  • 任何
  • 70 兵工学报
  • 60 Beijing Lig…
  • 50 科技导报
  • 41 Binggong Xu…
  • 更多
基金
  • 任何
    • 141 国家自然科学基金项目
      • 1 国家自然科学基金重…
      • 140 国家自然科学基金
    • 15 科技部国家科技计划项目
      • 3 国家高技术研究发展…
      • 5 国家重点基础研究发…
      • 3 国家科技支撑计划
      • 4 国家科技部博士后基金
    • 11 省市基金项目
      • 1 北京市科技计划项目
      • 1 山东省自然科学基金
      • 1 四川省科技计划项目
      • 1 河北省自然科学基金
      • 1 山东省科技发展基金
      • 1 宁夏回族自治区科技…
      • 1 安徽省自然科学基金
      • 1 北京市自然科学基金
      • 1 北京市教委科技发展…
      • 1 浙江省重点科技创新…
      • 1 吉林省教育厅“十二…
      ... 隐藏
    • 6 国防部国防科技基金项目
      • 6 国防基础科研基金
    • 4 国家教育部基金
      • 3 中央高校基本科研业…
      • 1 高等学校博士学科点…
  • 更多
学院简介:成果数量:2035

机电学院是北京理工大学以军为主、军民融合、具有鲜明军工特色的主要院系之一,其前身是成立于1954年的第二机械系(弹药系),经过半个多世纪的建设与发展,特别是改革开放以来,已形成多学科、多层次的办学实体,学科专业和科学研究国防特色鲜明,办学实力雄厚,规模不断扩大,质量不断提高,各项工作都取得了明显成绩... [详细]

本院科研趋势: 发文数量 期刊收录
条数据
导出

作者: Wentao Sun;Huaxin Liu;Rongyu Tang;Yiran Lang;Jiping He;Qiang Huang (Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081, China. sun_wentao@outook.com. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China. sun_wentao@outook.com. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China. 0077@bit.edu.cn. Beijing Innovation Centre for Intelligent Robots and Systems, Beijing 100081, China. 0077@bit.edu.cn. Beijing Innovation Centre for Intelligent Robots and Systems, Beijing 100081, China. tangrongyu@semi.ac.cn. Beijing Innovation Centre for Intelligent Robots and Systems, Beijing 100081, China. langyiran@sina.com. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China. JIPING.HE@asu.edu. Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081, China. qhuang@bit.edu.cn. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China. qhuang@bit.edu.cn.)

出处: Sensors (Basel, Switzerland) 2019

关键词: generative flow model;hand-gesture classification;surface electromyography

摘要: Conventional pattern-recognition algorithms for surface electromyography (sEMG)-based hand-gesture classification have difficulties in capturing the c ...

作者: Hengzhen Feng;Wenzhong Lou;Dakui Wang and Fuquan Zheng (National Key Laboratory of Electro-Mechanics Engineering and Control, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China;National Key Laboratory of Electro-Mechanics Engineering and Control, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China;Beijing Institute of Electronic System Engineering, Beijing 100854, People’s Republic of China;National Key Laboratory of Electro-Mechanics Engineering and Control, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China)

出处: Journal of Micromechanics and Microengineering 2019

摘要: A silicon-based micro-electro-mechanical systems (MEMS) safety and arming (S&A) device is presented, which exhibits high precision and reliability and ...

作者: Juan Cui;Huaping Wang;Qing Shi;Tao Sun;Qiang Huang;Toshio Fukuda (Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China. cuijuan2016@bit.edu.cn. Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China. wanghuaping@bit.edu.cn. Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China. shiqing8309@gmail.com. Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China. stnuc@sohu.com. Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China. qhuang@bit.edu.cn. Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China. tofukuda@nifty.com.)

出处: Molecules (Basel, Switzerland) 2019

关键词: 3D assembly;GelMA hydrogel;co-culture;liver tissue engineering

摘要: Three-dimensional (3D) tissue models replicating liver architectures and functions are increasingly being needed for regenerative medicine. However, t ...

作者: Xiaofeng Gao;Xinhong Hao;Ping Li;Guolin Li (Science and Technology on Electromechanical Dynamic Control Laboratory, School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China. nmbtgxf@bit.edu.cn. Science and Technology on Electromechanical Dynamic Control Laboratory, School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China. haoxinhong@bit.edu.cn. Science and Technology on Electromechanical Dynamic Control Laboratory, School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China. liping85@bit.edu.cn. Science and Technology on Electromechanical Dynamic Control Laboratory, School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China. 7920161015@bit.edu.cn.)

出处: Sensors (Basel, Switzerland) 2019

关键词: 2-D DOA estimation;L-shaped nested arrays;cross-correlation matrix;small numbers of samples

摘要: In this paper, an improved two-dimensional (2-D) direction of arrival (DOA) estimation algorithm for L-shaped nested arrays is proposed. Unlike the ap ...

作者: Yingshun Li;Aina Wang;Xiaojian Yi (Faculty of Electronic and Electrical Engineering, Dalian University of Technology, Dalian 116081, China. leeys@dlut.edu.cn. Faculty of Electronic and Electrical Engineering, Dalian University of Technology, Dalian 116081, China. llldddyyy@mail.dult.edu.cn. The School of Mechatronical Engineering, Beijing Institute of Technology, &Department of Overall Technology, China North Vehicle Research Institute &Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 10071, China. yixiaojian@amss.ac.cn.)

出处: Sensors (Basel, Switzerland) 2019

关键词: DS evidence theory;fire control system;information fusion;rough set theory;status assessment

摘要: In traditional fault diagnosis strategies, massive and disordered data cannot be utilized effectively. Furthermore, just a single parameter is used fo ...

作者: 彭泓铮,杨丰友,万力伦,冉靖,黄开书,芮久后 (重庆红宇精密工业有限责任公司军研二所;北京理工大学机电学院)

出处: 兵工自动化 2019

关键词: 2,4-二硝基苯甲醚;熔铸炸药;高固含量;致密成型

摘要: 为提高炸药的高能量和安全性能,对非TNT基高固含量熔铸炸药致密成型工艺进行研究。运用ANSYS软件建立熔铸炸药自然冷却温度场,构建装药壳体实体和有限元模型,对装药疵病的产生与防止进行分析。根据'组分体积形状尺寸匹配准则',运用振动、抽真空、保温冷却等工艺措施,实现高固含量熔铸炸药高致密成型。研究结果 ...

作者: 樊迪,HyunwooKim,陈晓鹏,刘云辉,黄强 (北京理工大学机电学院;香港中文大学机械与自动化工程学系)

出处: 模式识别与人工智能 2019 第32卷 第1期 P10-16

关键词: 人脸分析;多任务学习;卷积神经网络;笑容识别;性别分类;机器仿生眼

摘要: 智能机器人中人机交互的性能至关重要,人脸分析可以使人机交互变得更友善.文中提出可以同时进行笑容识别和性别分类的多任务学习卷积神经网络,同时学习存在内在相关性的任务,提升单个任务的性能.在Celeb A数据集的测试集上,文中网络在笑容识别任务和性别分类任务中均获取较高准确率.在设计的机器仿生眼上验证文 ...

作者: 曾令辉,曾建成 (北京理工大学机电学院;宁夏大学物电学院)

出处: 制造业自动化 2019 第41卷 第1期 P99-103

关键词: 羊胎素粉剂;仿人智能控制;量产;冻干工艺;试验定标

摘要: 羊胎素是从羊胎盘中提取出来的一种具有极高生物活性的营养物质。作为药品、保健品、美容化妆品的添加剂,羊胎素已经越来越多地为许多行业所青睐。其自动化量产工艺的要求日渐突出。宁夏是羊胎素的主产地,目前,其生产规模多为实验室小样机的小规模生产,即使有少量企业级规模的生产设备,其控制方式也是传统的人工控制,生 ...

作者: Gao Huang;Marco Ceccarelli;Qiang Huang;Weimin Zhang;Zhangguo Yu;Xuechao Chen;Jingeng Mai (Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China. huanggao@bit.edu.cn. Intelligent Robot Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China. huanggao@bit.edu.cn. Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing, 100081, China. huanggao@bit.edu.cn. LARM: Laboratory of Robotics and Mechatronics, University of Cassino and South Latium, Cassino, 03043, Italy. huanggao@bit.edu.cn. Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China. ceccarelli@unicas.it. Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing, 100081, China. ceccarelli@unicas.it. LARM: Laboratory of Robotics and Mechatronics, University of Cassino and South Latium, Cassino, 03043, Italy. ceccarelli@unicas.it. Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China. qhuang@bit.edu.cn. Intelligent Robot Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China. qhuang@bit.edu.cn. Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing, 100081, China. qhuang@bit.edu.cn. Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China. zhwm@bit.edu.cn. Intelligent Robot Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China. zhwm@bit.edu.cn. Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing, 100081, China. zhwm@bit.edu.cn. Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China. yuzg@bit.edu.cn. Intelligent Robot Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China. yuzg@bit.edu.cn. Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing, 100081, China. yuzg@bit.edu.cn. Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China. chenxuechao@bit.edu.cn. Intelligent Robot Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China. chenxuechao@bit.edu.cn. Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing, 100081, China. chenxuechao@bit.edu.cn. The Robotics Research Group, College of Engineering, Peking University, China. Jingengmai@pku.edu.cn.)

出处: Sensors (Basel, Switzerland) 2019 Vol.19 No.3

关键词: EMG signal;assistive robots;master-slave control;muscle exercises;pedal-actuated wheelchair

摘要: The muscles of the lower limbs directly influence leg motion, therefore, lower limb muscle exercise is important for persons living with lower limb di ...

作者: Jiawen Chen;Jianhua Li;Lixin Xu (School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China. 13718925459@163.com. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China. jhli@bit.edu.cn. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China. lxxu@bit.edu.cn.)

出处: Micromachines 2019 Vol.10 No.4

关键词: GMI magnetic sensor;MEMS;amorphous wire;high integrated

摘要: In this paper, a highly integrated amorphous wire Giant magneto-impedance (GMI) magnetic sensor using micro electron mechanical system (MEMS) technolo ...

机电学院简介

机电学院是北京理工大学以军为主、军民融合、具有鲜明军工特色的主要院系之一,其前身是成立于1954年的第二机械系(弹药系),经过半个多世纪的建设与发展,特别是改革开放以来,已形成多学科、多层次的办学实体,学科专业和科学研究国防特色鲜明,办学实力雄厚,规模不断扩大,质量不断提高,各项工作都取得了明显成绩,已为国家经济建设和国防建设培养和输送本科毕业生6100余名、硕士研究生3200余名,博士研究生近千名。现全日制在校学生1700余名,其中本科生891名,硕士研究生458名,博士研究生392名。
机电学院现下设:力学工程系、安全与能源工程系、机电工程系和智能机器人研究所。并拥有爆炸科学与技术国家重点实验室和引信动态特性国防科技重点实验室。
学院拥有一支整体水平高、团队精神好、结构合理、发展潜力大的教师队伍。学院现有教职工194人,其中教师147人。有:中国工程院院士2人;国家级有突出贡献的中青年专家3人;长江学者奖励计划特聘教授3人;国家杰出青年科学基金获得者2人;百千万人才工程第一、二层次入选者2人;国务院学位委员会学科评议组成员2人;博士生导师43人;教授(含研究员)48人;副高职48人;教师中具有博士学位者125人;教育部“长江学者与创新团队发展计划”创新团队1人;国防科工委“国防科技创新团队”3个。
学院主持建设国家一级重点学科1个,国家二级重点学科2个,参与建设一级国家重点学科1个。学院有本科专业5个;主持建设博士学位授权点一级学科1个,主持建设博士学位授权点二级学科3个,参与建设博士学位授权点二级学科1个。硕士学位授权点二级学科9个,工程硕士专业学位授权点3个,博士后科研流动站2个。2000以来,获“全国百篇优秀博士学位论文”1篇,“全国优秀博士学位论文”提名2篇;2名兵器工程硕士研究生获全国“做出突出贡献的工程硕士学位获得者”称号。
学院拥有以爆炸科学与技术国家重点实验室和引信动态特性国防科技重点实验室为代表的多层次实验体系。实验室现有建筑总面积14,000余平方米,仪器设备总价值1.4亿元。
学院科研综合实力雄厚,在先进武器装备和国防关键技术研究方面已取得较丰硕成果,多数成果已在国防和军队现代化建设中应用并发挥了关键作用。2000年以来,学院已获得国家技术发明二等奖3项,国家科技进步二等奖4项;近三年获省、部级科技成果奖37项,年均科研经费超过1亿元。授权专利57项;被三大检索(SCI、EI、ISTP)机构收录论文共992篇。
学院重视开展国际学术交流,与国外许多高等院校、科学研究机构建立了比较稳定的学术合作关系。先后承办国内外学术会议及各类学术活动159次;先后派出9名教师出国进修、学习。