李庆娜
作者: Wang, Yixin1;Li, Qingna1,2 (1Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China.;2Beijing Inst Technol, Beijing Key Lab MCAACI, Key Lab Math Theory & Computationin Informat Secur, Beijing, Peoples R China.)
出处: OPTIMIZATION 2024
关键词: MODEL SELECTION; REGRESSION; PARAMETER
摘要: Support vector classification (SVC) with logistic loss has excellent theoretical properties in classification problems where the label values are not ...
作者: Bai, Xiaoning1; Ye, Yuge1; Li, Qingna2
出处: 6th International Conference on Data Science and Information Technology, DSIT 2023 Shanghai, China 2023
会议录: 67-72
作者: Cui, Chunfeng1;Li, Dong-Hui2;Li, Qing-Na3;Ling, Chen4 (1Beihang Univ, Sch Math Sci, LMIB Minist Educ, Beijing 100191, Peoples R China.;2South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China.;3Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China.;4Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Peoples R China.)
出处: PACIFIC JOURNAL OF OPTIMIZATION 2023 Vol.19 No.1 PI-III
摘要: The optimization method is one of the core techniques to solve practical problems arising from science and engineering. With the rapid development of ...
作者: Li, Qingna1; Qian, Yaru1; Zemkoho, Alain2 (1School of Mathematics and Statistics, Beijing Key Laboratory on MCAACI, Key Laboratory of Mathematical Theory and Computation in Information Security, Beijing Institute of Technology, Beijing; 100081, China;2School of Mathematical Sciences, University of Southampton, Southampton; SO17 1BJ, United Kingdom)
出处: arXiv 2023
作者: Hamza, Sakar Hasan1; Li, Qingna1 (1School of Mathematics and Statistics, Beijing Institute of Technology, Beijing; 100081, China)
出处: Energies 2023 Vol.16 No.12
作者: Zheng, Yu-Kai1; Chen, Wei-Kun2; Li, Qing-Na2 (1School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, China;2School of Mathematics and Statistics, Beijing Key Laboratory on Mcaaci, Beijing Institute of Technology, Beijing, China)
出处: arXiv 2023
作者: Wang, Yixin1; Li, Qingna1, 2 (1School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, China;2Beijing Key Laboratory on MCAACI, Key Laboratory of Mathematical Theory and Computation in Information Security, Beijing Institute of Technology, Beijing, China)
出处: arXiv 2023
作者: Lu, Sitong1;Li, Qingna2,3; (1 Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China. ;2 Beijing Inst Technol, Sch Math & Stat, Beijing Key Lab MCAACI, Key Lab Math Theory & Computat Informat Secur, Beijing, Peoples R China. ;3 Beijing Inst Technol, Sch Math & Stat, Beijing Key Lab MCAACI, Key Lab Math Theory & Computat Informat Secur, Beijing 100081, Peoples R China.)
出处: OPTIMIZATION METHODS & SOFTWARE 2023
关键词: SUPPORT VECTOR MACHINE; CLASSIFICATION
摘要: Support vector machine (SVM) is an important and fundamental technique in machine learning. Soft-margin SVM models have stronger generalization perfor ...
作者: 尹娟1;,王乐2,3;,白晓宁4;,李燕婕2;,王鑫2;,张在坤5;,李炳照4;,李扬6;,石菊芳2;,李庆娜4; (1北京理工大学管理与经济学院;2国家癌症中心国家肿瘤临床医学研究中心和中国医学科学院北京协和医学院肿瘤医院癌症早诊早治办公室;3浙江省肿瘤医院;4北京理工大学数学与统计学院MCAACI北京市重点实验室和信息安全的数学理论与计算工信部重点实验室;5香港理工大学应用数学系;6中国医学科学院北京协和医学院医学信息研究所)
出处: 中国科学(数学) 2023 第53卷 第6期 P895-913
关键词: 乳腺癌;自然史;参数选择;黄金分割法;无导数法;坐标下降法
摘要: 乳腺癌是女性最常见的恶性肿瘤之一.为了提出有效的筛查策略并评估其效果,一个基本且重要的步骤是在中国乳腺癌自然史模型中选择合适的参数,即转移概率.选择合理的转移概率有两个挑战.首先,由于乳腺癌的流行病学特性,其他国家使用的转移概率不一定适用于中国.其次,可用的筛查样本数据很少,这使得传统的基于统计的方 ...
作者: Su, Wen1; Li, Qingna2
出处: 5th International Conference on Data Science and Information Technology, DSIT 2022 Shanghai, China 2022